Compact Kernel Hashing with Multiple Features

Xianglong Liu*, Junfeng He†, Di Liu‡, Bo Lang*

*State Key Lab of Software Development Environment, Beihang University, Beijing, China
†Columbia University, New York, NY 10027, U.S.A.
‡China Academy of Telecommunication Research of MIIT, Beijing, China

Background and Related Work

Background

- The explosive growth of the vision data motivates the recent studies on hashing based nearest neighbor search (ANN)
- Locality-Sensitive Hashing (LSH) gives the paradigm of hashing based ANN
- Various scenarios: unsupervised, supervised, kernelized, and multiple probes

Related Work

- Adapтивly combining diverse complementary features can give improved performance
- Existing multiple feature hashing approaches either simply post-combine linear outputs of each feature type or equally pre-concateenate all features as one

Main Issues

- The correlation and importance of each feature type are still not fully exploited
- Computationally expensive in both training and searching

Multiple Feature Kernel Hashing

Notations

- a set of N training examples with M visual features
- \(X_n^{(m)} \in \mathbb{R}^{d_m \times 1} \): the m-th feature (d_m dimension) of n-th sample
- \(X^{(m)} = [X_1^{(m)}, X_2^{(m)}, ..., X_n^{(m)}] \): the m-th feature of all data

Key Idea

- Learn a kernel space incorporating multiple features, where the neighbor relationships can be well preserved.

Nonlinear feature mapping

- a series of embedding functions \(\phi_{n}(\cdot) \) corresponding to each visual feature
- nonlinear mapping of i-th sample \(\phi_i(x) = [\phi_1^T(x_i), ..., \phi_p^T(x_i)]^T \)
- linear projection hashing \(h_p(x_i) \equiv \text{sign}(V_p^T \phi(x_i) + b_p) \)

Multiple kernel form

- \(V_p \) in kernel space can be represented as a combination of R landmarks \(Z_r \)
- let \(K^{(m)} \) denote the kernel corresponding to \(\phi_{m}(\cdot) \), then \(\phi(\cdot) \)
 defines a kernel \(K = \sum_{m=1}^{M} \mu_m K^{(m)} \)
- kernel hashing
 \(h_p(x_i) \equiv \text{sign}(W_p K_i + b_p), p = 1, ..., P \)

Optimization

- Objective function similar to that of spectral hashing

\[\mathcal{L}(S, W, h_p) = \frac{1}{2} \sum_{i,j} S_{ij} ||Y_i - Y_j||^2 + \lambda ||W||^2 \]

Spectral embedding loss regularization

- Alternating optimization
- Update hashing parameters: \((W, h) \)
- Update linear combination coefficients: \(\mu \)

Datasets

- CIFAR-10: 60K, 384D GIST + 300D SIFT BoW
- NUS-WIDE: 270K, 128D texture + 225D color

Experiments

- MAP for Hamming ranking
- Recall, precision of top results

Conclusion

- Efficient multiple feature hashing.
 - similarity preserving hashing with linearly combined multiple kernels
 - efficient alternating optimizing way